Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Res Sq ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562709

RESUMO

Background: Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Methods: Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. Results: We first identified specific non-coding variants in CTSB that drive the association with PD and are linked to changes in brain CTSB expression levels. Using iPSC-derived dopaminergic neurons we then find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. Moreover, in cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. Similarly, in midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition or knockout potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. Conclusions: The results of our genetic and functional studies indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.

2.
Autophagy ; : 1-3, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597070

RESUMO

Mutations in the PINK1 kinase cause Parkinson disease (PD) through physiological processes that are not yet fully elucidated. PINK1 kinase accumulates selectively on damaged mitochondria, where it recruits the E3 ubiquitin ligase PRKN/Parkin to mediate mitophagy. Upon mitochondrial import failure, PINK1 accumulates in association with the translocase of outer mitochondrial membrane (TOMM). However, the molecular basis of this PINK1 accumulation on the TOMM complex remain elusive. We recently demonstrated that TIMM23 (translocase of the inner mitochondrial membrane 23) is a component of the PINK1-supercomplex formed in response to mitochondrial stress. We also uncovered that PINK1 is required for the formation of this supercomplex and highlighted the biochemical regulation and significance of this supercomplex; expanding our understanding of mitochondrial quality control and PD pathogenesis.

3.
Mol Neurodegener ; 19(1): 31, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576039

RESUMO

BACKGROUND: Induced pluripotent stem cell-derived microglia (iMGL) represent an excellent tool in studying microglial function in health and disease. Yet, since differentiation and survival of iMGL are highly reliant on colony-stimulating factor 1 receptor (CSF1R) signaling, it is difficult to use iMGL to study microglial dysfunction associated with pathogenic defects in CSF1R. METHODS: Serial modifications to an existing iMGL protocol were made, including but not limited to changes in growth factor combination to drive microglial differentiation, until successful derivation of microglia-like cells from an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) patient carrying a c.2350G > A (p.V784M) CSF1R variant. Using healthy control lines, the quality of the new iMGL protocol was validated through cell yield assessment, measurement of microglia marker expression, transcriptomic comparison to primary microglia, and evaluation of inflammatory and phagocytic activities. Similarly, molecular and functional characterization of the ALSP patient-derived iMGL was carried out in comparison to healthy control iMGL. RESULTS: The newly devised protocol allowed the generation of iMGL with enhanced transcriptomic similarity to cultured primary human microglia and with higher scavenging and inflammatory competence at ~ threefold greater yield compared to the original protocol. Using this protocol, decreased CSF1R autophosphorylation and cell surface expression was observed in iMGL derived from the ALSP patient compared to those derived from healthy controls. Additionally, ALSP patient-derived iMGL presented a migratory defect accompanying a temporal reduction in purinergic receptor P2Y12 (P2RY12) expression, a heightened capacity to internalize myelin, as well as heightened inflammatory response to Pam3CSK4. Poor P2RY12 expression was confirmed to be a consequence of CSF1R haploinsufficiency, as this feature was also observed following CSF1R knockdown or inhibition in mature control iMGL, and in CSF1RWT/KO and CSF1RWT/E633K iMGL compared to their respective isogenic controls. CONCLUSIONS: We optimized a pre-existing iMGL protocol, generating a powerful tool to study microglial involvement in human neurological diseases. Using the optimized protocol, we have generated for the first time iMGL from an ALSP patient carrying a pathogenic CSF1R variant, with preliminary characterization pointing toward functional alterations in migratory, phagocytic and inflammatory activities.


Assuntos
Leucoencefalopatias , Microglia , Adulto , Humanos , Diferenciação Celular , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Microglia/metabolismo , Fosforilação , Células-Tronco/metabolismo
4.
medRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405952

RESUMO

Background and Objectives: Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. While SN dopamine dysfunction has clear neurophysiological effects, the impact of reduced LC norepinephrine signaling on brain activity in PD remains to be established. Methods: We used neuromelanin-sensitive T1-weighted MRI (NPD = 58; NHC = 27) and task-free magnetoencephalography (NPD = 58; NHC = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. Results: We found pathological increases in rhythmic alpha (8 - 12 Hz) activity in patients with decreased LC neuromelanin, with a stronger association in patients with worse attentional impairments. This negative alpha-LC neuromelanin relationship is also stronger in fronto-motor cortices, which are regions with high densities of norepinephrine transporters in the healthy brain, and where alpha activity is negatively related to attention scores. These observations support a noradrenergic association between LC integrity and alpha band activity. Our data also show that rhythmic beta (15 - 29 Hz) activity in the left somato-motor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Discussion: Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha activity reflects dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.

5.
Proc Natl Acad Sci U S A ; 121(10): e2313540121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416681

RESUMO

Mutations in PTEN-induced putative kinase 1 (PINK1) cause autosomal recessive early-onset Parkinson's disease (PD). PINK1 is a Ser/Thr kinase that regulates mitochondrial quality control by triggering mitophagy mediated by the ubiquitin (Ub) ligase Parkin. Upon mitochondrial damage, PINK1 accumulates on the outer mitochondrial membrane forming a high-molecular-weight complex with the translocase of the outer membrane (TOM). PINK1 then phosphorylates Ub, which enables recruitment and activation of Parkin followed by autophagic clearance of the damaged mitochondrion. Thus, Parkin-dependent mitophagy hinges on the stable accumulation of PINK1 on the TOM complex. Yet, the mechanism linking mitochondrial stressors to PINK1 accumulation and whether the translocases of the inner membrane (TIMs) are also involved remain unclear. Herein, we demonstrate that mitochondrial stress induces the formation of a PINK1-TOM-TIM23 supercomplex in human cultured cell lines, dopamine neurons, and midbrain organoids. Moreover, we show that PINK1 is required to stably tether the TOM to TIM23 complexes in response to stress such that the supercomplex fails to accumulate in cells lacking PINK1. This tethering is dependent on an interaction between the PINK1 N-terminal-C-terminal extension module and the cytosolic domain of the Tom20 subunit of the TOM complex, the disruption of which, by either designer or PD-associated PINK1 mutations, inhibits downstream mitophagy. Together, the findings provide key insight into how PINK1 interfaces with the mitochondrial import machinery, with important implications for the mechanisms of mitochondrial quality control and PD pathogenesis.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Quinases , Humanos , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Brain ; 147(2): 427-443, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671615

RESUMO

Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1ß secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , c-Mer Tirosina Quinase/metabolismo , Doença por Corpos de Lewy/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Proteínas Tirosina Quinases , Sinucleinopatias/metabolismo
7.
Brain ; 147(3): 887-899, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804111

RESUMO

There are 78 loci associated with Parkinson's disease in the most recent genome-wide association study (GWAS), yet the specific genes driving these associations are mostly unknown. Herein, we aimed to nominate the top candidate gene from each Parkinson's disease locus and identify variants and pathways potentially involved in Parkinson's disease. We trained a machine learning model to predict Parkinson's disease-associated genes from GWAS loci using genomic, transcriptomic and epigenomic data from brain tissues and dopaminergic neurons. We nominated candidate genes in each locus and identified novel pathways potentially involved in Parkinson's disease, such as the inositol phosphate biosynthetic pathway (INPP5F, IP6K2, ITPKB and PPIP5K2). Specific common coding variants in SPNS1 and MLX may be involved in Parkinson's disease, and burden tests of rare variants further support that CNIP3, LSM7, NUCKS1 and the polyol/inositol phosphate biosynthetic pathway are associated with the disease. Functional studies are needed to further analyse the involvements of these genes and pathways in Parkinson's disease.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Fosfatos de Inositol , Neurônios Dopaminérgicos , Aprendizado de Máquina , Fosfotransferases (Aceptor do Grupo Fosfato)
8.
Ann Neurol ; 95(4): 802-816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146745

RESUMO

OBJECTIVE: Parkinson's disease (PD) affects the structural integrity and neurophysiological signaling of the cortex. These alterations are related to the motor and cognitive symptoms of the disease. How these changes are related to the neurochemical systems of the cortex is unknown. METHODS: We used T1-weighted magnetic resonance imaging (MRI) and magnetoencephalography (MEG) to measure cortical thickness and task-free neurophysiological activity in patients with idiopathic PD (nMEG = 79, nMRI = 65) and matched healthy controls (nMEG = 65, nMRI = 37). Using linear mixed-effects models, we examined the topographical alignment of cortical structural and neurophysiological alterations in PD with cortical atlases of 19 neurotransmitter receptor and transporter densities. RESULTS: We found that neurophysiological alterations in PD occur primarily in brain regions rich in acetylcholinergic, serotonergic, and glutamatergic systems, with protective implications for cognitive and psychiatric symptoms. In contrast, cortical thinning occurs preferentially in regions rich in noradrenergic systems, and the strength of this alignment relates to motor deficits. INTERPRETATION: This study shows that the spatial organization of neurophysiological and structural alterations in PD is relevant for nonmotor and motor impairments. The data also advance the identification of the neurochemical systems implicated. The approach uses novel nested atlas modeling methodology that is transferrable to research in other neurological and neuropsychiatric diseases and syndromes. ANN NEUROL 2024;95:802-816.


Assuntos
Transtornos Mentais , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética
9.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014143

RESUMO

Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.

10.
J Neurochem ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804203

RESUMO

Significant evidence suggests that misfolded alpha-synuclein (aSyn), a major component of Lewy bodies, propagates in a prion-like manner contributing to disease progression in Parkinson's disease (PD) and other synucleinopathies. In fact, timed inoculation of M83 hemizygous mice with recombinant human aSyn preformed fibrils (PFF) has shown symptomatic deficits after substantial spreading of pathogenic alpha-synuclein, as detected by markers for the phosphorylation of S129 of aSyn. However, whether accumulated toxicity impact human-relevant cognitive and structural neuroanatomical measures is not fully understood. Here we performed a single unilateral striatal PFF injection in M83 hemizygous mice, and using two assays with translational potential, ex vivo magnetic resonance imaging (MRI) and touchscreen testing, we examined the combined neuroanatomical and behavioral impact of aSyn propagation. In PFF-injected mice, we observed widespread atrophy in bilateral regions that project to or receive input from the injection site using MRI. We also identified early deficits in reversal learning prior to the emergence of motor symptoms. Our findings highlight a network of regions with related cellular correlates of pathology that follow the progression of aSyn spreading, and that affect brain areas relevant for reversal learning. Our experiments suggest that M83 hemizygous mice injected with human PFF provides a model to understand how misfolded aSyn affects human-relevant pre-clinical measures and suggest that these pre-clinical biomarkers could be used to detect early toxicity of aSyn and provide better translational measures between mice and human disease.

11.
Prog Neurobiol ; 231: 102538, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832713

RESUMO

Patients with Parkinson's disease (PD) exhibit multifaceted changes in neurophysiological brain activity, hypothesized to represent a global cortical slowing effect. Using task-free magnetoencephalography and extensive clinical assessments, we found that neurophysiological slowing in PD is differentially associated with motor and non-motor symptoms along a sagittal gradient over the cortical anatomy. In superior parietal regions, neurophysiological slowing reflects an adverse effect and scales with cognitive and motor impairments, while across the inferior frontal cortex, neurophysiological slowing is compatible with a compensatory role. This adverse-to-compensatory gradient is sensitive to individual clinical profiles, such as drug regimens and laterality of symptoms; it is also aligned with the topography of neurotransmitter and transporter systems relevant to PD. We conclude that neurophysiological slowing in patients with PD signals both deleterious and protective mechanisms of the disease, from posterior to anterior regions across the cortex, respectively, with functional and clinical relevance to motor and cognitive symptoms.


Assuntos
Doença de Parkinson , Humanos , Magnetoencefalografia , Lobo Frontal , Lobo Parietal
12.
Trends Endocrinol Metab ; 34(8): 427-429, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321958

RESUMO

Given their polyvalent roles, an intrinsic challenge that mitochondria face is the continuous exposure to various stressors including mitochondrial import defects, which leads to their dysfunction. Recent work has unveiled a presequence translocase-associated import motor (PAM) complex-dependent quality control pathway whereby misfolded proteins mitigate mitochondrial protein import and subsequently elicit mitophagy without the loss of mitochondrial membrane potential.


Assuntos
Mitocôndrias , Mitofagia , Humanos , Mitocôndrias/metabolismo , Transporte Proteico , Proteínas Mitocondriais/metabolismo
13.
Data Brief ; 48: 109141, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37213552

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disorder affecting regions such as the substantia nigra (SN), red nucleus (RN) and locus coeruleus (LC). Processing MRI data from patients with PD requires anatomical structural references for spatial normalization and structural segmentation. Extending our previous work, we present multi-contrast unbiased MRI templates using nine 3T MRI modalities: T1w, T2*w, T1-T2* fusion, R2*, T2w, PDw, fluid-attenuated inversion recovery (FLAIR), susceptibility-weighted imaging, and neuromelanin-sensitive MRI (NM). One mm isotropic voxel size templates were created, along with 0.5 mm isotropic whole brain templates and 0.3 mm isotropic templates of the midbrain. All templates were created from 126 PD patients (44 female; ages=40-87), and 17 healthy controls (13 female; ages=39-84), except the NM template, which was created from 85 PD patients and 13 controls, respectively. The dataset is available on the NIST MNI Repository via the following link: http://nist.mni.mcgill.ca/multi-contrast-pd126-and-ctrl17-templates/. The data is also available on NITRC at the following link: https://www.nitrc.org/projects/pd126/.

14.
medRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066346

RESUMO

Parkinson's disease (PD) affects cortical structures and neurophysiology. How these deviations from normative variants relate to the neurochemical systems of the cortex in a manner corresponding to motor and cognitive symptoms is unknown. We measured cortical thickness and spectral neurophysiological alterations from structural magnetic resonance imaging and task-free magnetoencephalography in patients with idiopathic PD (NMEG = 79; NMRI = 65), contrasted with similar data from matched healthy controls (NMEG = 65; NMRI = 37). Using linear mixed-effects models and cortical atlases of 19 neurochemical systems, we found that the structural and neurophysiological alterations of PD align with several receptor and transporter systems (acetylcholine, serotonin, glutamate, and noradrenaline) albeit with different implications for motor and non-motor symptoms. Some neurophysiological alignments are protective of cognitive functions: the alignment of broadband power increases with acetylcholinergic systems is related to better attention function. However, neurochemical alignment with structural and other neurophysiological alterations is associated with motor and psychiatric impairments, respectively. Collectively, the present data advance understanding of the association between the nature of neurophysiological and structural cortical alterations in PD and the symptoms that are characteristic of the disease. They also demonstrate the value of a new nested atlas modeling approach to advance research on neurological and neuropsychiatric diseases.

15.
NPJ Parkinsons Dis ; 9(1): 61, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059749

RESUMO

Difficulty producing intelligible speech is a debilitating symptom of Parkinson's disease (PD). Yet, both the robust evaluation of speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography, we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the interactive scoring of speech impairments in PD (N = 59) is reliable across non-expert raters, and better related to the hallmark motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment ratings to neurophysiological deviations from healthy adults (N = 65), we show that articulation impairments in patients with PD are associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor cortices mediates the influence of cognitive decline on speech deficits.

16.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36941054

RESUMO

Autosomal recessive mutations in the Parkin gene cause Parkinson's disease. Parkin encodes an ubiquitin E3 ligase that functions together with the kinase PINK1 in a mitochondrial quality control pathway. Parkin exists in an inactive conformation mediated by autoinhibitory domain interfaces. Thus, Parkin has become a target for the development of therapeutics that activate its ligase activity. Yet, the extent to which different regions of Parkin can be targeted for activation remained unknown. Here, we have used a rational structure-based approach to design new activating mutations in both human and rat Parkin across interdomain interfaces. Out of 31 mutations tested, we identified 11 activating mutations that all cluster near the RING0:RING2 or REP:RING1 interfaces. The activity of these mutants correlates with reduced thermal stability. Furthermore, three mutations V393D, A401D, and W403A rescue a Parkin S65A mutant, defective in mitophagy, in cell-based studies. Overall our data extend previous analysis of Parkin activation mutants and suggests that small molecules that would mimic RING0:RING2 or REP:RING1 destabilisation offer therapeutic potential for Parkinson's disease patients harbouring select Parkin mutations.


Assuntos
Doença de Parkinson , Ubiquitina-Proteína Ligases , Animais , Humanos , Ratos , Mutação com Ganho de Função , Mutação/genética , Doença de Parkinson/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
STAR Protoc ; 4(1): 102113, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861831

RESUMO

There is conflicting evidence regarding the mechanisms of α-synuclein internalization, and its trafficking itinerary following cellular entry remains largely unknown. To examine these issues, we describe steps for coupling α-synuclein preformed fibrils (PFFs) to nanogold beads and their subsequent characterization by electron microscopy (EM). Then we describe the uptake of conjugated PFFs by U2OS cells plated on Permanox 8-well chamber slides. This process eliminates the reliance on antibody specificity and the need to employ complex immunoEM staining protocols. For complete details on the use and execution of this protocol, please refer to Bayati et al. (2022).1.


Assuntos
Neurônios , alfa-Sinucleína , Microscopia Eletrônica , Células Cultivadas
18.
Brain ; 146(5): 1859-1872, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36370000

RESUMO

The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Glucosilceramidase/genética , Estudo de Associação Genômica Ampla , Mutação , Hidrolases/genética
19.
Neurobiol Aging ; 119: 136-138, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36305379

RESUMO

Recessive mutations in PRKN, PARK7, and PINK1 are established causes of early-onset Parkinson's disease (EOPD). Previous studies have interrogated the role of heterozygous variants in these genes but mainly focused on rare (minor allele frequency [MAF] <1%) damaging variants or established mutations. Here, we assessed heterozygous private PRKN, PARK7 and PINK1 variants in PD risk in four large-scale PD case-control datasets by performing gene-wise burden analyses using sequencing data totaling 5,829 PD cases and 7,221 controls, and summary allele counts from 9,501 PD cases and 48,207 controls. Results showed no significant burden in all three genes after meta-analyses. Burden in EOPD (age at onset <50 years) and late-onset PD (≥50 years) remained nonsignificant. In summary, we found no evidence to support the association of the excess burden of heterozygous private variants in PRKN, PARK7, and PINK1 with PD risk in the European population. Larger, more diverse cohorts are needed to accurately determine their role in PD.


Assuntos
Doença de Parkinson , Proteína Desglicase DJ-1 , Proteínas Quinases , Ubiquitina-Proteína Ligases , Humanos , Idade de Início , Testes Genéticos , Mutação , Doença de Parkinson/genética , Doença de Parkinson/epidemiologia , Proteína Desglicase DJ-1/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
20.
Sci Rep ; 12(1): 17176, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229560

RESUMO

The use of human derived induced pluripotent stem cells (hiPSCs) differentiated to dopaminergic (DA) neurons offers a valuable experimental model to decorticate the cellular and molecular mechanisms of Parkinson's disease (PD) pathogenesis. However, the existing approaches present with several limitations, notably the lengthy time course of the protocols and the high variability in the yield of DA neurons. Here we report on the development of an improved approach that combines neurogenin-2 programming with the use of commercially available midbrain differentiation kits for a rapid, efficient, and reproducible directed differentiation of hiPSCs to mature and functional induced DA (iDA) neurons, with minimum contamination by other brain cell types. Gene expression analysis, associated with functional characterization examining neurotransmitter release and electrical recordings, support the functional identity of the iDA neurons to A9 midbrain neurons. iDA neurons showed selective vulnerability when exposed to 6-hydroxydopamine, thus providing a viable in vitro approach for modeling PD and for the screening of small molecules with neuroprotective proprieties.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Diferenciação Celular/genética , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Mesencéfalo/metabolismo , Neurotransmissores/metabolismo , Oxidopamina/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...